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Abstract

Let γ be the curve generating a Schramm-Loewner Evolution (SLE) process, with parameter κ > 0:

We prove that, with probability one, the Hausdorff dimension of γ is equal to Min(2, 1 + κ/8).

Introduction

It has been conjectured by theoretical physicists that various lattice models in statistical physics (such as

percolation, Potts model, Ising model, uniform spanning trees), taken at their critical point, have a continuous

conformally invariant scaling limit when the mesh of the lattice tends to 0. Recently, Oded Schramm [15]

introduced a family of random processes which he called Stochastic Loewner Evolutions (or SLE), that are

the only possible conformally invariant scaling limits of random cluster interfaces (which are very closely

related to all above-mentioned models).

An SLE process is defined using the usual Loewner equation, where the driving function is a time-

changed Brownian motion. More specifically, in the present paper we will be mainly concerned with SLE in

the upper-half plane (sometimes called chordal SLE), defined by the following PDE:

∂tgt(z) =
2

gt(z)−
√
κBt

, g
0
(z) = z (0.1)

where (Bt) is a standard Brownian motion on the real line and κ is a positive parameter. It can be shown that

this equation defines a family (gt) of conformal mappings from simply connected domains (Ht) contained in

the upper-half plane, onto H. We shall denote by Kt the closure of the complement of Ht in H: then for all

t > 0, Kt is a compact subset of H and the family (Kt) is increasing. For each value κ > 0, this defines a

random process denoted by SLEκ (see e.g. [14] for more details on SLE).
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There are very few cases where convergence of a discrete model to SLEκ is proved: Smirnov [17] (see also

the related work of Camia and Newman [3]) showed that SLE6 is the scaling limit of critical site percolation

interfaces on the triangular grid, and Lawler, Schramm and Werner [12] have proved that SLE2 and SLE8

are the respective scaling limits of planar loop-erased random walks and uniform Peano curves. Convergence

of the “harmonic explorer” was obtained by Schramm and Sheffield [16], and there is also strong evidence

([13]) that the infinite self-avoiding walk in the half-plane is related to SLE8/3.

It is natural to study the geometry of SLEκ, and in particular, its dependence on κ. It is known

(cf. [14, 12]) that for each κ > 0, the process (Kt) is generated by a random curve γ : [0,∞) → H (called

the trace of the SLE or the SLE curve), in the following sense: For each t > 0, Ht is the unique unbounded

connected component of H \ γ([0, t]). Furthermore (see [14]), γ is a simple curve when κ 6 4, and it is a

space-filling curve when κ > 8. The geometry of this curve will be our main object of interest in the present

paper.

It is possible, for each z ∈ H, to evaluate the asymptotics when ε→ 0 of the probability that γ intersects

the disk of radius ε around z. When κ < 8, this probability decays like εs for some s = s(κ) > 0. This

(loosely speaking) shows that the expected number of balls of radius ε needed to cover γ([0, 1]) (say) is

of the order of εs−2, and implies that the Hausdorff dimension of γ is not larger than 2 − s. Rohde and

Schramm ([14]) used this strategy to show that almost surely the Hausdorff dimension of the SLEκ trace is

not larger than 1 + κ/8 when κ 6 8, and they conjectured that this bound was sharp.

Our main result in the present paper is the proof of this conjecture, namely:

Theorem. Let (Kt) be an SLEκ in the upper-half plane with κ > 0, let γ be its trace and let H := γ([0,∞)).

Then, almost surely,

dimH(H) = 2 ∧
(

1 +
κ

8

)
.

This result was known for κ > 8 (because the curve is then space-filling), κ = 6 (see [2], recall that

this corresponds to the scaling limit of critical percolation clusters) and κ = 8/3 (this follows from the

description of the outer frontier of SLE6 — or planar Brownian motion — in terms of SLE8/3 in [11], and

the determination of the dimension of this boundary, see [8, 9]). Note that in both these special cases, the

models have a lot of independence built in (the Markov property of planar Brownian motion, the locality

property of SLE6), and that the proofs use it in a fundamental way.

SLE2 is the scaling limit (see [12]) of the two-dimensional loop-erased walk: Hence, we prove that the

Hausdorff dimension of this scaling limit is 5/4, i.e. it is equal to the growth exponent of the loop-erased

walk (obtained by Kenyon, cf. [6]) and, at least heuristically, this is not surprising. It is not known whether
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Kenyon’s result can be derived using SLE methods.

This exponent s and various other exponents describing exceptional subsets of γ are closely related to

critical exponents that describe the behaviour near the critical point of some functionals of the corresponding

statistical physics model. The value of the exponents 1 + κ/8 appear in the theoretical physics literature

(see e.g. [4] for a derivation based on quantum gravity, and the references therein) in terms of the central

charge of the model. Let us stress that in the physics literature, the derivation of the exponent is often

announced in terms of (almost sure) fractal dimension, thereby omitting to prove the lower bound on the

dimension. It might a priori be the case that the value εs−2 is due to exceptional realizations of SLEκ with

exceptionally many visited balls of radius ε, while “typical” realizations of SLEκ meet far fewer disks, in

which case the dimension of the curve could be smaller than 2− s.

One standard way to exclude such a possibility and to prove that 2 − s corresponds to the almost sure

dimension of a random fractal is to estimate the variance of the number of ε-disks needed to cover it. This

amounts to computing second moments, i.e. given two balls of radius ε, to estimating the probability that

the SLE trace intersects both of them — and this is the hairy part of the proof, especially if there is a

long-range dependence in the model. One also needs another non-trivial ingredient: One has to evaluate

precisely (i.e. up to multiplicative constants) the probability of intersecting one ball. Even in the Brownian

case (see e.g. [10]), this is not an easy task.

Note that the discrete counterpart of our theorem in the cases κ = 6 and κ = 2 is still an open problem. It

is known that for critical percolation interfaces (see [18]) and for loop-erased random walks [6], the expected

number of steps grows in the appropriate way when the mesh of the lattice goes to zero, but its almost

sure behaviour is not yet well-understood: For critical percolation, the up-to-constant estimate of the first

moment is missing, and for loop-erased random walks, we lack the second moment estimate.

Another natural object is the boundary of an SLE, namely ∂Kt ∩H. For κ 6 4, since γ is a simple curve,

the boundary of the SLE is the SLE itself; for κ > 4, it is a strict subset of the trace, and it is conjectured

to be closely related to the curve of an SLE16/κ (this is called SLE duality) — in particular, it should have

dimension 1 + 2/κ. Again, the first moment estimate is known for all κ (though not up to constants),

and yields the upper bound on the dimension. The lower bound is known to hold for κ = 6 (see [8]). A

consequence of our main theorem is that it also holds for κ = 8, because of the continuous counterpart of

the duality between uniform spanning trees and loop-erased random walks (which is the basis of Wilson’s

algorithm, cf. [19]).

The derivation of the lower bound on the dimension relies on the construction of a random Frostman
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measure µ supported on the curve. It appears that the properties of this measure are closely related to some

of those exhibited by conformal fields — more specifically, the correlations between the measures of disjoint

subsets of H behave similarly to the (conjectured) correlation functions in conformal field theory. See for

instance Friedrich and Werner [5].

The plan of this paper is as follows. In the first Section, we review some facts that can be found in our

previous paper ([2]) and that we will need later. Section 2 is devoted to the derivation of the up-to-constants

estimate of the first moment of the number of disks needed to cover the curve. In Section 3, we will derive

the upper bound on the second moment, which will conclude the proof of the main theorem. In the final

sections, we will comment on the properties of the Frostman measure supported on the SLE curve and on

the dimension of the outer boundary of SLE8.
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1 Preliminaries

As customary, the Hausdorff dimension of the random fractal curve γ will be determined using first and

second moments estimates. This framework was also used in [2]. We now briefly recall without proofs some

tools from that paper that we will use. The following Proposition is the continuous version of a similar

discrete construction due to Lawler (cf. [7]).

Let λ be the Lebesgue measure in [0, 1]2, and (Cε)ε>0 be a family of random Borel subsets of the square

[0, 1]2. Assume that for ε < ε′ we have almost surely Cε ⊆ Cε′ , and let C =
⋂
Cε. Finally, let s be a

nonnegative real number. Introduce the following conditions:

1. For all x ∈ [0, 1]2,

P (x ∈ Cε) � εs

(where the symbol � means that the ratio between both sides of the expression is bounded above and

below by finite positive constants);



1 PRELIMINARIES 5

2. There exists c > 0 such that for all x ∈ [0, 1]2 and ε > 0,

P (λ(Cε ∩ B(x, ε)) > cε2|x ∈ Cε) > c > 0 ;

3. There exists c > 0 such that for all x, y ∈ [0, 1]2 and ε > 0,

P ({x, y} ⊂ Cε) 6 cε2s|x− y|−s.

Proposition 1. With the previous notations,

1. If conditions 1. and 2. hold, then a.s. dimH(C) 6 d− s;

2. If conditions 1. and 3. hold, then with positive probability dimH(C) > d− s.

Remark: The similar proposition which can be found in [7] is stated in a discrete setup in which condition

2. does not appear. Indeed, in most cases, this condition is a direct consequence of condition 1. and the

definition of Cε (for instance, if Cε is a union of balls of radius ε as will be the case here).

The value of the exponent in Condition 1. is usually given in terms of the principal eigenvalue of a

diffusion generator (cf. [1] for further reference). The rule of thumb is as follows:

Lemma 2. Let (Xt) be the diffusion on the interval [0, 1] generated by the following stochastic differential

equation:

dXt = σ dBt + f(Xt) dt

where (Bt) is a standard real-valued Brownian motion, σ is a positive constant, and where f is a smooth

function on the open unit interval satisfying suitable conditions near the boundary. Let L be the generator

of the diffusion, defined by

Lφ =
σ2

2
φ′′ + fφ′,

and let λ be its leading eigenvalue. Then, as t goes to infinity, the probability pt that the diffusion is defined

up to time t tends to 0 as

pt � e−λt.

We voluntarily do not state the conditions satisfied by f in detail here (roughly f needs to make both 0

and 1 absorbing boundaries, while being steep enough to allow a spectral gap construction — cf. [2] for a

more complete statement), because we shall not use the Lemma in this form in the present paper; we include

it mainly for background reference.
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The next two sections contain derivations of Conditions 1. and 3.; together with Proposition 1, this

implies that

P
[
dimH H = 1 +

κ

8

]
> 0.

The main theorem then follows from the zero-one law derived in [2], namely:

Lemma 3 (0–1 law for the trace). For all d ∈ [0, 2], we have

P (dimH H = d) ∈ {0, 1}.

2 The first moment estimate

Fix κ > 0 and z0 ∈ H; let γ be the trace of a chordal SLEκ in H, and let H = γ([0,∞)) be the image of γ.

We want to compute the probability that H touches the disk B(z
0
, ε) for ε > 0.

Proposition 4. Let α(z0) ∈ (0, π) be the argument of z0 . Then, if κ ∈ (0, 8), we have the following estimate:

P (B(z0 , ε) ∩H 6= ∅) �
(

ε

=(z0)

)1−κ/8

(sinα(z0))
8/κ−1

.

If κ > 8, then this probability is equal to 1 for all ε > 0.

Remark: We know that H is a closed subset of H̄ (indeed, this is a consequence of the transience of γ —

cf. [14]). For κ > 8, this proves that for all z ∈ H̄, P (z ∈ H) = 1, hence H almost surely has full measure.

And since it is closed, this implies that with probability 1, γ is space-filling, as was already proved by Rohde

and Schramm ([14]) for κ > 8 and by Lawler, Schramm and Werner ([12]) for κ = 8 (for which a separate

proof is needed for the existence of γ).

Proof. The idea of the following proof is originally due to Oded Schramm. Let δt be the Euclidean distance

between z0 and Kt. (δt) is then a non-increasing process, and its limit when t goes to +∞ is the distance

between z
0
and H. Besides, we can apply the Köbe 1/4 theorem to the map gt: this leads to the estimate

δt �
=(gt(z0))

|g′t(z0)|
(2.1)

(where the implicit constants are universal — namely, 1/4 and 4).

It will be more convenient to fix the image of z0 under the random conformal map. Hence, introduce the

following map:

g̃t : z 7→ gt(z)− gt(z0)

gt(z)− gt(z0)
.
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It is easy to see that g̃t maps H \Kt conformally onto the unit disk U, and maps infinity to 1 and z0 to 0.

In other words, the map

w 7→ g̃t

(
wgt(z0)− gt(z0)

w − 1

)

maps the complement of some compact K̃t in U onto U, fixing 0 and 1 (in all this proof, z will stand for an

element of H and w for an element of U). Moreover, in this setup Equation 2.1 becomes simpler (because

the distance between 0 and the unit circle is fixed): Namely,

δt �
1

|g̃′t(z0)|
. (2.2)

Differentiating g̃t(z) with respect to t (which is a little messy and error-prone, but straightforward) leads

to the following differential equation:

∂tg̃t(z) =
2(β̃t − 1)3(

gt(z0)− gt(z0)
)2

β̃2
t

· β̃tg̃t(z)(g̃t(z)− 1)

g̃t(z)− β̃t
, (2.3)

where (β̃t) is the process on the unit circle defined by

β̃t =
βt − gt(z0)

βt − gt(z0)
.

Now the structure of the expression for ∂tg̃t(z) (Equation (2.3)) is quite nice: The first factor does not

depend on z and the second one only depends on z
0
through β̃. Hence, let us define a (random) time change

by taking the real part of the first factor; namely let

ds =
(β̃t − 1)4∣∣∣gt(z0)− gt(z0)

∣∣∣2 β̃2
t

dt,

and introduce hs = g̃t(s).

Then Equation (2.3) becomes similar to a radial Loewner equation, i.e. it can be written as

∂shs(z) = X̃(β̃t(s), hs(z)), (2.4)

where X̃ is the vector field in U defined as

X̃(ζ, w) =
2ζw(w − 1)

(1− ζ)(w − ζ)
. (2.5)
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The only missing part is now the description of the driving process β̃. Applying Itô’s formula (now this

is an ugly computation) and then the previous time-change, we see that β̃t(s) can be written as exp(iαs)

where (αs) is a diffusion process on the interval (0, 2π) satisfying the equation

dαs =
√
κ dBs +

κ− 4

2
cotg

αs
2

ds (2.6)

with the initial condition α0 = 2α(z0).

The above construction is licit as long as z
0
remains inside the domain of gt. While this holds, differen-

tiating (2.4) with respect to z at z = z0 yields

∂sh
′
s(z0) =

2h′s(z0)

1− β̃s
,

so that dividing by h′s(z0) 6= 0 and taking the real parts of both sides we get

∂s log |h′s(z0)| = 1,

i.e. almost surely, for all s > 0, |h′s(z0)| = |h′
0
(z

0
)|es. Combining this with (2.2) shows that

δt(s) � δ0e−s � =(z
0
) e−s.

Finally, let us look at what happens at the stopping time

τz
0

= Inf{t : z0 ∈ Kt}.

We are in one out of two situations: Either z0 is on the trace: in this case δt goes to 0, meaning that s goes to

∞, and the diffusion (αs) does not touch {0, 2π}. Or, z
0
is not on the trace: then δt tends to d(z

0
,H) > 0,

and the diffusion (αs) reaches the boundary of the interval (0, 2π) at time

s0 := log δ0 − log d(z0 ,H) +O(1).

Let S be the surviving time of (αs): the previous construction then shows that

d(z
0
,H) � δ

0
e−S ,
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and estimating the probability that z0 is ε-close to the trace becomes equivalent to estimating the probability

that (αs) survives up to time log(δ
0
/ε).

Assume for a moment that κ > 4. The behaviour of cotgα/2 when α is close to 0 shows that (αs) can

be compared to the diffusion (ᾱs) generated by

dᾱs =
√
κ dBs + (κ− 4)

ds

ᾱs
,

which (up to a linear time-change) is a Bessel process of dimension

d =
3κ− 8

8
.

More precisely: (ᾱs) survives almost surely, if and only if (αs) survives almost surely. But it is known that

a Bessel process of dimension d survives almost surely if d > 2, and dies almost surely if d < 2. Hence, we

already obtain the phase transition at κ = 8:

• If κ > 8, then d > 2, and (αs) survives almost surely. Hence, almost surely d(z
0
,H) = 0, and for all

ε > 0 the trace will almost surely touch B(z
0
, ε);

• If κ < 8, then d < 2 and (αs) dies almost surely in finite time. Hence, almost surely d(z0 ,H) > 0.

So, there is nothing left to prove for κ > 8. From now on, we shall then suppose that κ ∈ (0, 8). If κ 6 4

then the drift of (αs) is toward the boundary, hence comparing it to standard Brownian motion shows that

it dies almost surely in finite time as for κ ∈ (4, 8). We want to apply Lemma 2 to (αs) and for that we need

to know the principal eigenvalue of the generator Lκ of the diffusion. It can be seen that the function

(sin(x/2))8/κ−1

is a positive eigenfunction of Lκ, with eigenvalue 1−κ/8: hence we already obtain that, if α
0
is far from the

boundary, P (S > s) � exp(−(1− κ/8)s) i.e.

P ( d(z0 ,H) 6 ε) � e(1−κ/8) log(ε/δ
0
) �

(
ε

δ0

)1−κ/8

, (2.7)

which is the correct estimate. It remains to take the value of α
0
into account.

Introduce the following process:

Xs := sin
(αs

2

)8/κ−1

e(1−κ/8)s



2 THE FIRST MOMENT ESTIMATE 10

(and Xs = 0 if s > S). Applying the Itô formula shows that (Xs) is a local martingale (in fact this is the

same statement as saying that sin(x/2)8/κ−1 is an eigenfunction of the generator), and it is bounded on any

bounded time interval. Hence, taking the expected value of X at times 0 and s shows that

sin
(α0

2

)8/κ−1

= e(1−κ/8)s P (S > s) E

[
sin
(αs

2

)8/κ−1
∣∣∣∣S > s

]
. (2.8)

The same proof as that of Lemma 2 shows that, for all s > 1,

P (αs ∈ [π/2, 3π/2]|S > s) > 0

with constants depending only on κ; combining this with (2.8) then provides

P (S > s) � e−(1−κ/8)s sin
(α

0

2

)8/κ−1

,

again with constants depending only on κ. Applying the same computation as for Equation (2.7) ends the

proof.

Corollary 5. Let D  C be a simply connected domain, a and b be two points on the boundary of D, and

γ be the path of a chordal SLEκ in D from a to b, with κ ∈ (0, 8). Then, for all z ∈ D and ε < d(z, ∂D)/2,

we have

P (γ ∩ B(z, ε) 6= ∅) �
(

ε

d(z, ∂D)

)1−κ/8

(ωz(ab) ∧ ωz(ba))
8/κ−1

,

where ωz is the harmonic measure on ∂D seen from z and ab is the positively oriented arc from a to b along

∂D.

Proof. This is easily seen by considering a conformal map Φ mapping D to the upper-half plane, a to 0 and

b to ∞: Since the harmonic measure from z in D is mapped to the harmonic measure from Φ(z) in H, it is

sufficient to prove that for all z ∈ H,

ωz(R+) ∧ ωz(R−) � sin(arg z) ;

and ωz(R+) can be explicitly computed, because ωz is a Cauchy distribution on the real line:

ωx+iy(R+) =
1

π

∫ ∞
0

du/y

1 + (u− x)2/y2
=

1

2
+

1

π
arctg(x/y).

When x tends to −∞, this behaves like −y/πx which is equivalent to sin(arg(x+ iy))/π.
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This “intrinsic” formulation of the hitting probability will make the derivation of the second moment

estimate more readable.

3 The second moment estimate

We still have to derive condition 3. in Proposition 1. For κ = 6 it was obtained using the locality property,

but this does not hold for other values of κ, so we can rely only on the Markov property. In this whole

section we shall assume that κ < 8 (there is nothing to prove if κ > 8, since in that case γ is space-filling).

The general idea is as follows. Fix two points z and z′ in the upper half plane, and ε < |z′ − z|/2. We

want to estimate the probability that the trace γ visits both B(z, ε) and B(z′, ε). Assume that it touches,

say, the first one (which happens with probability of order ε1−κ/8), and that it does so before touching the

other.

Apply the Markov property at the first hitting time Tε(z) of B(z, ε): If everything is going fine and we

are lucky, the distance between z′ and KTε(z) will still be of order |z′− z|. Hence, applying the first moment

estimate to this situation shows that the conditional probability that γ hits B(z′, ε) is not greater than

C.(ε/|z′ − z|)1−κ/8 (it might actually be much smaller, if the real part of gTε(z)(z
′) is large, but this is not a

problem since we only need an upper bound), and this gives the right estimate for the second moments:

C
ε2−κ/4

|z′ − z|1−κ/8
.

The whole point is then to prove that this is the main contribution to the second moment; the way we achieve

it is by providing sufficiently sharp upper bounds for the second term of the estimate given by Corollary 5.

3.1 Preliminaries

The first part of the proof is a succession of topological lemmas which allow for a precise estimation of the

harmonic measures of the two sides of the SLE process. They are easier to state in the case κ 6 4, for

which the process consists in a simple curve. In the case 4 < κ < 8, what happens is that a positive area

is “swallowed” by the process; in all the following discussion, nothing changes as long as the points z and

z′ themselves are not swallowed, and the arguments are exactly the same — as all that is required for the

proofs to apply is for the complement of the process to be simply connected and contain both z and z′.

On the other hand, if (say) z is swallowed at a given time, at which the curve has not touched C(z, ε)

yet, then this will never happen, so this event does not contribute at all to the probability of the event we

are interested in. If the trace does touch C(z, ε) before swallowing z, then the swallowing occurs at a time
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when it is not relevant anymore — since we know already that z is ε-close to the path — so again the rest

of the argument is not affected.

In order to simplify the exposition of the argument, we will implicitly assume that indeed κ 6 4. The

interested reader can easily check as she proceeds that what follows does apply to the other cases, with little

change in the writing.

Let z, z′ be two points in the upper half plane, and let δ = |z − z′|/2. We can assume that both =z and

=z′ are greater than 18δ (say). Introduce a “separator set” (cf. Figure 1):

E = C
(
z + z′

2
, 2δ

)
∪ {w ∈ H : d(w, z) = d(w, z′) 6 δ

√
5}.

$z$ $z’$

$\mathcal E$

$\delta$z z′

E

δ

Figure 1: Second moments: the setup

At each positive time t, the complement Ht of Kt in H is an open and simply connected domain, hence

its intersection with E is the disjoint union of at most countably many connected sets, each separating Ht

into two (or up to four for at most two of them) connected components. If both z and z′ are in Ht, let Et

be the union of those crosscuts which disconnect z from z′ in Ht; if either z or z′ is in Kt, let Et = ∅ —

notice that in the case of an SLE process with parameter κ 6 4, this almost surely never happens. Note

that, as long as z and z′ are in Ht, Et is not empty, because Ht is simply connected and E itself disconnects

z from z′. The components of Et can then be ordered in the way they first appear on any path going from z

to z′ in Ht; let λt be the first one, and λ′t be the last one (which is also the first one seen from z′ to z); for

convenience, in the case Et = ∅, let λt = λ′t = ∅ too.

For each time t (possibly random), introduce

t̃ := Inf {s > t : Ks ∩ λ′t 6= ∅} , (3.1)
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ť := Inf {s > t : Ks ∩ λt 6= ∅} , (3.2)

with the usual convention that the infimum of the empty set is infinite. Clearly τ̃ and τ̌ are stopping times

if τ is one.

Besides, Et does not change on any time-interval on which γ does not intersect E — hence, if for some

t1 < t2, γ((t1, t2)) ∩ E = ∅, we can define Et2− as its constant value on the interval (t1, t2) (i.e., as Et1). We

say that a positive stopping time t is a good time if the following conditions are satisfied with probability 1:

• There exists s < t such that γ((s, t)) ∩ E = ∅;

• γ(t) ∈ Et−.

Examples of good times are t̃ and ť when t is a stopping time such that γ(t) /∈ E holds with probability 1.

We first give two preliminary lemmas which will be useful in estimating the harmonic measures appearing

in the statement of Corollary 5. They are not specific to SLE, but they depend (as stated) on the fact that

γ is a simple curve which does not contain z nor z′ (as is the case with probability 1 in the case κ 6 4); they

have obvious counterparts obtained by exchanging z and z′ and replacing everywhere t̃ with ť.

For each positive time, let ωt (resp. ω′t) be the smaller of the harmonic measures of the two sides of γ,

from z (resp. z′) in Ht — this corresponds to the term we want to estimate in the statement of Corollary

5. (Here and in all the sequel, as is natural we include the positive real axis in the right side of γ and the

negative real axis in its left side.) Besides, for t > 0 and ρ ∈ (0, δ), let Bt(ρ) (resp. B′t(ρ)) be the closure of

the connected component of z (resp. z′) in B(z, ρ) ∩Ht (resp. B(z′, ρ) ∩Ht).

In all that follows, we will use the following notations at each time t > 0 (together with their counterparts

around z′):

rt := d(z, γ([0, t]) ∪ R) ;

ρt := Inf{ρ ∈ (0, δ) : Bt(ρ) disconnects z′ from ∞ in Ht}

(letting ρt = δ if the infimum is taken over an empty set). Obviously (rt) is non-increasing; but (ρt) is not

in general. Besides, ρt > rt. Lastly, since the sets Bt(ρ) and γ([0, t]) are all compact, it is easy to see that

at each time t such that ρt < δ, γ([0, t]) ∪ Bt(ρt) itself does disconnect z′ from infinity.

Lemma 6. There exists a positive constant c such that the following happens. Let t be a good time, and

ρ ∈ (rt, δ). If ωt > c(rt/ρ)1/2, then γ([0, t]) ∪ Bt(ρ) disconnects z′ from infinity; in particular, ρt 6 ρ.
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$z$

$z’$
$\gamma_t$

$\mathcal C(z,\rho)$

z

z′

γt

C(z, ρ)

Figure 2: Proof of Lemma 6

Proof. First make the following remark: For ρ ∈ (rt, δ), if the harmonic measure from z in Bt(ρ) \ γ([0, t])

gives positive mass to both sides of γ, then Bt(ρ) separates z′ from infinity in Ht.

Indeed, assume that we are this case. That means that there exist two disjoint smooth curves ζ1,

ζ2 : [0, 1] → H satisfying ζ1(0) = ζ2(0) = z, ζi((0, 1)) ⊂ Bt(ρ) \ γ([0, t]) and ζi(1) ∈ γ([0, t]), each landing

on a different side of γ (i.e. lims→1 gt(ζ1(s)) − βt ∈ (0,+∞) and lims→1 gt(ζ2(s)) − βt ∈ (−∞, 0) — note

that such limits are always well-defined because gt extends continuously to the boundary of Ht). Let

ζ = ζ1((0, 1)) ∪ ζ2((0, 1)) ∪ {z} be the corresponding cross-cut: The complement of ζ in Ht has exactly two

(simply) connected components, one of which is unbounded.

If γ(t) were on the boundary of the unbounded component, then one could continue γ([0, t]) with some

curve γ̂ contained in Ht\ζ and tending to infinity. Then the bounded component of Ht\ζ would be contained

in one of the components of H\ (γ([0, t])∪ γ̂) hence its boundary (which contains both endpoints of ζ) would

intersect only one side of γ — which is in contradiction with our hypothesis.

Now if z′ were in the unbounded component, it would be possible to join z to z′ inside the unbounded

component. But such a path would have to intersect the part of Et− which contains γ(t) (by the definition of

Et− and that of a good time), and it does not because this part of Et is contained in the connected component

of Ht \ ζ which contains γ(t) on its boundary — that is, the bounded one.

To sum it up: γ([0, t])∪ ζ cuts Ht into two connected components, and the bounded component contains

z′ in its interior and γ(t) on its boundary. In particular, since ζ is contained in Bt(ρ), this implies that Bt(ρ)
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separates z′ from infinity in Ht.

It is then straightforward to complete the proof of the lemma, by applying Beurling’s estimate in Bt(ρ)

and the maximum principle.

We will actually use the converse of this lemma: At any good time t, we have

ωt 6 c

(
rt
ρt

)1/2

. (3.3)

A related fact is the following:

Lemma 7. Let r ∈ (0, δ), T be the first time when γ hits the circle C(z, r) and T̃ as introduced above (see

equation 3.1). If T̃ if finite, then BT̃ (r) does not disconnect z′ from infinity in HT̃ .

Proof. Let ζ be a continuous, simple curve going from z′ to infinity in HT̃ , and let C be the connected

component of HT \ E which contains z′. It is always possible to ensure that ζ intersect every component

of ET̃ at most once. The boundary of C is contained in γ([0, T ]) ∪ λ′T ; and since γ([0, T ]) ∩ E is not empty

(because E separates C(z, r) from 0), necessarily γ([0, T ]) ∩ λ̄′T 6= ∅. In particular, HT \ (ζ ∪ C ∪ λ′T ) has

exactly two unbounded connected components, say U1 and U2.

Assume that BT̃ (r) does disconnect z′ from infinity. Then ζ has to intersect its interior, splitting it into

at most countably many connected components. γ([0, T̃ ]) has to intersect at least one component on each

side of ζ, since if not one could deform ζ so that it avoids BT̃ (r) — but by the definition of T , γ([0, T ])

intersects only the adherence of one component, say on the left of ζ. By construction, the only way for γ to

reach a component on the other side of ζ is by intersecting C and hence λ′T , so it cannot happen before time

T̃ .

In other words: If T is the first time when γ intersects C(z, r) and τ is the first time t such that ρt 6 r,

then assuming that τ is finite, we have T < T̃ < τ .

The last lemma in this section is specific to SLE: It is a quantitative version of the transience of the

curve γ and basically says that if γ forms a fjord, then it is not likely to enter it. With the modifications of

notations described later for the case 4 < κ < 8, it holds also in that case, and the proof is the same.

Lemma 8. Let γ be the trace of an SLE with parameter κ 6 4; then there exist positive constants C and

η such that the following happens. Let ρ > 0 and let τ be the first time t such that ρt 6 ρ ( i.e., such that

γ([0, t]) ∪ Bt(ρ) disconnects z′ from infinity). τ is finite with positive probability, in which case we have

|γτ − z| = ρ, and:
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1. P (τ̃ <∞|Fτ , τ <∞ ) 6 C(ρ/δ)η;

2. For every r < rτ ,

P (τ̃ <∞, rτ̃ < r |Fτ , τ <∞ ) 6 C(r/rτ )1−κ/8(ρ/δ)η.

$\zeta$

$\lambda’_\tau$

$\mathcal B_\tau(\rho)$
$z’$

$z$

$\gamma_\tau$

$\zeta’$ ζ

λ′τ

Bτ (ρ)
z′

z

γτ

ζ ′

Figure 3: Proof of Lemma 8: Setup

Proof. (i) In all this proof, c will denote any finite positive constant which depends only on κ. Notice that

if z′ ∈ Kτ (which can happen if κ > 4), there is nothing to prove, since τ̃ = ∞ in this case; so we assume

from now on that z′ /∈ Kτ . Recall that λ′τ is the last component of Eτ that one has to cross when going

from z to z′ in Hτ . By monotonicity, the extremal distance between E and Bτ (ρ) in Hτ it bounded below

by 1
2π log(δ/ρ) — and hence so is the extremal distance between λ′τ and Bτ (ρ).

By the definition of τ , it is possible to find a simple continuous curve ζ going from z′ to ∞ in (Hτ \

Bτ (ρ))∪{γτ} (for instance, by using the fact that γ([0, τ −s])∪Bτ (ρ) does not separate z′ from∞ for s > 0,

choosing ζs accordingly, and letting s go to 0); and there exists a simple continuous curve ζ ′ going from z

to γτ in Bτ (ρ). Considering these curves, it is easy to see that λ′τ disconnects z′, and not z, from infinity in

Hτ .

The construction also shows that |γτ − z| 6 ρ: Indeed, if not then we can deform ζ locally around γτ to

obtain a continuous curve going from z′ to infinity without hitting γ([0, τ ])∪Bτ (ρ), which is in contradiction

with the definition of τ . If on the other hand we had |γτ−z| < ρ, then for s < τ large enough, Bs(ρ)∪γ([0, s])

would still disconnect z′ from infinity, also leading to a contradiction — hence |γτ − z| = ρ.
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$\varphi(\lambda’_\tau)$$0$

$\mathcal C(x,r)$

$\varphi(\mathcal B_{\tau}(\rho))$

$\varphi(z)$

ϕ(λ′τ )0

C(x, r)

ϕ(Bτ (ρ))

ϕ(z)

Figure 4: Proof of Lemma 8: After mapping by ϕ

Map the whole picture by ϕ := gτ − βτ . Bτ (ρ) is mapped to a cross-cut having 0 on its closure, and the

images of λ′τ and z′ are in a bounded connected component of its complement (cf. Fig. 4). The boundary

of the unbounded component of the complement of ϕ(Bτ (ρ)) contains either (−∞, 0) or (0,∞); for ease of

notation, we assume that the former holds, as in the figure.

By conformal invariance, the extremal distance in H between ϕ(λ′τ ) and ϕ(Bτ (ρ)) is bounded below by

1
2π log(δ/ρ) — and so is the extremal distance between ϕ(λ′τ ) and (−∞, 0), since 0 is on the closure of

ϕ(B(z, ρ)). Let x > 0 be the smallest element of R ∩ ϕ(λ′τ ) and let r > 0 be the smallest positive real such

that C(x, r) separates ϕ(λ′τ ) from infinity (so that in particular ϕ(λ′τ ) ⊂ B̄(x, r)). Let l be the extremal

distance in H \ϕ(λ′τ ) between (0, x) and (Max(R∩ϕ(λ′τ )),+∞), i.e. the reciprocal of the extremal distance

in H between (−∞, 0) and ϕ(λ′τ ): We have l 6 c/ log(δ/ρ).

On the other hand, it is possible to find a lower bound for l in terms of x and r, as follows: Consider

the metric given by u(z) = α/|z − x| if r/5 < |z − x| < 5x, and u(z) = 0 otherwise, where α is chosen to

normalize the surface integral to 1 — so that α is of order 1/ log(x/r). In this metric, the length of any curve

joining (0, x) to (Max(R∩ϕ(λ′τ )),+∞) around ϕ(λ′τ ) is at least of order α (this can be seen for instance by

using the conformal map z 7→ log(z − x), which maps u, where it is not zero, to the renormalized Euclidean

metric). Hence, we obtain a lower bound for l, of the form l > c/ log(x/r), and thus an upper bound on r/x

of the form c(ρ/δ)α for some α > 0.

Let p(r) be the probability that a chordal SLEκ starting at 0 touches the circle C(1, r). Since we are in

the case κ < 8, 0 < p(r) < 1 as soon as r ∈ (0, 1), and p(r) goes to 0 with r; besides, the strong Markov
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property applied at the first hitting time of C(1, r) (if such a time exists) together with Köbe’s 1/4-theorem

ensure that there is a finite positive constant C > 1 such that, for all r, r′ < 1, p(rr′) 6 Cp(r)p(r′). So, let

r
0
be such that p(r

0
) < C−2 and apply the inequality n − 1 times to obtain p(rn

0
) 6 Cn−1(C−2)n 6 C−n.

This implies that p(r) is bounded above by crη
′
for some η′ > 0 (actually the optimal value for η′ is the

same as the boundary exponent sb = (8/κ)− 1, but we will not need this).

Hence we obtain

P (τ̃ <∞|Fτ , τ <∞) 6 c
( r
x

)η′
6 c

(ρ
δ

)η
with η > 0, as we wanted.

(ii) The proof of this estimate is actually a simpler version of the proof of the second-moment estimate in

the next section, so we will explain it in more detail than would probably be necessary. We want to estimate

the conditional probability, conditionally to Fτ , that τ̃ is finite and that the curve γ hits the circle C(z, r)

before τ̃ (we say that γ succeeds if these two conditions are satisfied). Fix a ∈ (0, 1) (its value will be chosen

later in the proof): If γ succeeds, then in particular it has to hit all the circles of the form C(z, rτak) lying

between γ(τ) and C(z, r), and (the relevant parts of) all the circles of the form C(z, ρa−k) lying between γ(τ)

and Eτ .

The idea is then the following: For each possible ordering of these hitting times, we will estimate the

probability that the circles are hit in this particular order, using the strong Markov property recursively

together with previous estimates; we can then sum over all possible orderings to obtain an estimate of the

probability that γ succeeds.

For each k > 0, let Tk be the first hitting time of C(z, rτak) by γ. Besides, let λk be the last connected

component of C(z, ρa−k) ∩ Hτ which a curve going from z to z′ has to cross, and let τk be the first hit-

ting time of λk by γ. Last, let k1 (resp. k2) be the largest integer smaller than log(δ/ρ)/ log(1/a) (resp.

log(rτ/r)/ log(1/a)): It is sufficient to give an upper bound for the probability that both τk1 and Tk2 are

finite and smaller that τ̃ .

We describe the ordering of the hitting times by specifying the successive numbers of circles of each kind

which γ hits before time τ̃ . More precisely, assume that γ succeeds: Then there are nonnegative integers I,

(mi)i6I and (li)i6I all positive except possibly for m1 and lI , such that

τ1 < · · · < τm1 < T1 < · · · < Tl1 < τm1+1 < · · · < τm1+m2 < · · · < Tl1+···+lI < τ̃

and
∑
mi = k1 and

∑
li = k2 (so that γ first crosses m1 of the λk, then l1 of the C(z, rτak), then m2 new

λk, and so on).
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Notice that at time τi, Beurling’s estimate in the domain B(z, rτ )\γ([0, τi]) shows that ωτi is at most equal

to C.(rτi/rτ )1/2 (by Lemma 7 and the same argument as the one used in the proof of Lemma 6). Besides, the

same proof as that of point (i) in the present Lemma shows the following: For given values of the (mi) and

(li), for each i, conditionally to FTl1+···+li
and the facts that Tl1+···+li <∞ and that the last τ -time happening

before Tl1+···+li is τm1+···+mi
(as will be the case in the construction), P (τm1+···+mi+1

< ∞|FTl1+···+li
) is

bounded by Caηmi+1 .

For given values of I and the (mi) and (li), applying the strong Markov property at each of the times

Tl1+···+li and τm1+···+mi , we get an estimate of the conditional probability (conditionally to Fτ ) that γ

succeeds with this particular ordering, as a product of conditional probabilities, namely

I∏
i=1

P
(
τm1+···+mi <∞

∣∣∣FTl1+···+li−1

)
P
(
Tl1+···+li <∞

∣∣Fτm1+···+mi

)
.

Using the previous estimates, and Corollary 5, this product is bounded above by

I∏
i=1

Caηmi
(
al1+···+li−1

)(8/κ−1)/2 (
ali
)1−κ/8

.

It remains to sum this estimate over all possible values of I, the mi and the li. We get the following,

where as is usual C is allowed to change from line to line, but depends only on κ and later on a:

P (τk1 < τ̃, Tk2 < τ̃) 6
∞∑
I=1

∑
(mi),(li)

I∏
i=1

Caηmi
(
al1+···+li−1

)(8/κ−1)/2 (
ali
)1−κ/8

6 aηk1+(1−κ/8)k2

∞∑
I=1

CI
∑

(mi),(li)

I∏
i=1

(
al1+···+li−1

)(8/κ−1)/2

= aηk1+(1−κ/8)k2

∞∑
I=1

CI
∑

(mi),(li)

I∏
i=1

(
a(I−i)li

)(8/κ−1)/2

.

For a fixed value of I, the number of possible choices for the mi (which are I integers of sum k1) is smaller

than 2I+k1 , hence replacing C by 2C we get

P (τk1 < τ̃, Tk2 < τ̃) 6 aηk1+(1−κ/8)k2 2k1
∞∑
I=1

CI
∑
(li)

I∏
i=1

(
a(I−i)li

)(8/κ−1)/2

.

The sum over (li) is taken over all I-tuples of positive integers with sum k2, so if the first I − 1 are known,

so is the last one. An upper bound is then given by relaxing the condition l1 + · · · + lI = k2 and simply
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summing over all positive values of l1, . . . , lI−1 (lI does not contribute to the product anyway). So we obtain

P (τk1 < τ̃, Tk2 < τ̃) 6 aηk1+(1−κ/8)k2 2k1
∞∑
I=1

CI
I−1∏
i=1

∑
l>0

(
a(I−i)l

)(8/κ−1)/2

.

We can sum over l > 0 in each term of the product, each sum will be equal to a(I−i)(8/κ−1)/2 up to a constant

which, if a is chosen small enough, is smaller than 2. Hence a factor 2I which can again be made part of CI

by doubling the value of C:

P (τk1 < τ̃, Tk2 < τ̃) 6 aηk1+(1−κ/8)k2 2k1
∞∑
I=1

CI
I−1∏
i=1

(
a(I−i)

)(8/κ−1)/2

Compute the product explicitly: The exponent of a is then the sum of the I − i for 1 6 i 6 I − 1, which

is equal to I(I − 1)/2. The linear term −I/2 can be incorporated in the factor CI (making C depend on a

now, which will not be a problem), leading to

P (τk1 < τ̃, Tk2 < τ̃) 6 aηk1+(1−κ/8)k2 2k1
∞∑
I=1

CI
(
aI

2/2
)(8/κ−1)/2

6 (2aη/2)k1a(η/2)k1+(1−κ/8)k2

∞∑
I=1

CI
(
aI

2/2
)(8/κ−1)/2

.

Now pick a small enough that 2aη/2 is smaller than 1. The sum in the previous expression is finite (because

κ < 8 and a < 1), so we obtain

P (τk1 < τ̃, Tk2 < τ̃) 6 Ca(η/2)k1+(1−κ/8)k2

which implies the announced result.

Remark 1: It is possible to simplify the statement of the last part of the proof of the lemma (though

unfortunately not the computation), in the following way. Let m = (mi) and l = (li) be the jump sizes of

the process, which we will interpret as ordered partitions of k1 and k2, respectively. As is customary, we

write this as m ` k1, resp. l ` k2. The length of the partitions, i.e. I, will be denoted as |m| = |l|. Let l+ be

the cumulative sum of l, i.e. the sequence (l1 + · · ·+ li)16i6I−1. Using am as a shortcut for the product of

the ami , the main step in the proof of (ii) above is the following inequality, valid for any positive exponents
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α, β and γ and for a small enough that 4caγ/2 < 1: Uniformly in k1 and k2,

∑
m`k1,l`k2,|l|=|m|

aαm+βl+γl+c|l| 6 Caαk1/2+βk2 . (3.4)

The direct use of this inequality and similar notations will greatly simplify the writing of the proof in the

next section.

Remark 2: One could describe the behaviour of the system in the proof of point (ii) in a different way.

Let mt (resp. lt) be the value of k corresponding to the last λk (resp. C(z, rτak)) discovered by γ by time

t (or 0 if t < τ1, resp. t < T1). The process (mt, lt) takes values in N2; looking at it at times Tl1+···+li , one

can couple it with a discrete-time Markov chain (Mi, Li) in Ω = N2 ∪ {∆}, with an absorbing state ∆ and

transition probabilities given by

• P (Mi+1 = Mi +m,Li+1 = Li + l|Mi, Li) = 0 if m 6 0 or l 6 0,

• P (Mi+1 = Mi +m,Li+1 = Li + l|Mi, Li) 6 Caηm+(8/κ−1)Mi/2+(1−κ/8)l if m > 0 and l > 0.

The probability estimate provided by point (ii) of the previous lemma is then bounded above by the

probability that this Markov chain, started at (0, 0), reaches the domain Dk1,k2 = Jk1,∞J×Jk2,∞J. Such a

probability can be estimated by summing the probabilities of all possible paths going from (0, 0) to Uk1,k2

(which corresponds to the proof we just gave), or by finding an appropriate super-harmonic function on N2.

However we could not find a simple expression for such a super-harmonic function.

3.2 The proof

Applying Lemma 6, Corollary 5 and the strong Markov property, we obtain the following estimate (which

we will refer to as the main estimate): For every good time t and every radius r ∈ (0, rt),

P
(
γ([t,∞)) ∩ B(z, r) 6= ∅

∣∣∣ Ft, t <∞) 6 C

(
r

rt

)s(
rt
ρt

)sb/2
, (3.5)

where we define the hull and boundary exponents by

s = 1− κ

8
and sb =

8

κ
− 1

and where C depends only on κ. The way to obtain the required second-moment estimate from this upper

bound is actually quite similar in spirit to the way we proved point (ii) of Lemma 8: We will split the

event that γ hits two small disks according to the order in which it visits a finite family of circles, estimate
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each of these individual probabilities as a product using the strong Markov property, and then sum over all

possibilities. The notations are quite heavier than previously, though.

Introduce a small constant a ∈ (0, 1) (the value of which will be determined later) and let δn = anδ. We

will split the event

Eε(z, z
′) := {B(z, ε) ∩ γ([0,∞)) 6= ∅,B(z′, ε) ∩ γ([0,∞)) 6= ∅}

according to the order in which the processes (rt), (r′t), (ρt) and (ρ′t) reach the values δn. For convenience,

let n̄ = blog(ε/δ)/ log ac: It is sufficient to estimate the probability that both (rt) and (r′t) reach the value

δn̄.

Let Tn (resp. T ′n, τn, τ ′n) be the first time when rt (resp. r′t, ρt, ρ′t) is not greater than δn (or infinity, if

such a time does not exist). We will call all these stopping times discovery times.

Lemma 9. For all n, n′ > 0 we have the following (as well as their counterparts obtained by exchanging the

roles of z and z′) if all the involved stopping times are finite :

1. γτn ∈ C(z, δn) ∩ Bτn(δn); in particular |γτn − z| = δn;

2. Tn < Tn+1 and τn < τn+1;

3. T̃n < τn;

4. If Tn < T ′n′ then T̃n < T ′n′ , and similarly replacing T (resp. T ′, resp. both) by τ (resp. τ ′, resp. both).

Proof. Point (i) was proved as part of Lemma 8; point (ii) is then obvious and point (iii) is a direct conse-

quence of Lemma 7, so only (iv) requires a proof.

Assume that Tn < T ′n′ . Let ζ be a curve going from z to z′, obtained by concatenating ζ1 ⊂ BTn
(δn),

γ([Tn, T
′
n′ ]) and ζ2 ⊂ BT ′

n′
(δn′). Such a curve has to cross λ′Tn

(by definition), and that can only happen

on γ((Tn, T
′
n′)) because the distance between ETn and z (resp. z′) is greater than δn (resp. δn′). This is

equivalent to saying that T̃n < T ′n′ , which is what we wanted. The same reasoning applies when replacing T

by τ and/or T ′ by τ ′.

Here is a somewhat informal description of the construction we will do. Assume that γ hits both B(z, δn̄)

and B(z′, δn̄). In order to do it, it has to cross all the circles of radii δn, n 6 n̄ around z and z′, and it will

do so in a certain order, coming back to the separator set E between explorations around z and around z′

(this is the meaning of point (iv) of the previous Lemma). We call a task the time interval spanning between
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two successive such returns on E . The conditional probability that a given task is performed, conditionally

to its past, is then given by the main estimate (3.5), and the rest of the construction is then very similar to

the proof of point (ii) in Lemma 8.

Let S
0

= 0 and define the stopping times Si and S′i for i > 0, inductively, as follows:

• S′i = Min ({Tn, T ′n, τn, τ ′n} ∩ (Si−1,∞)), i.e. S′i is the first discovery time after Si−1, if such a time

exists;

• Si = S̃′i if S′i is a Tn or a τn, Si = Š′i if S′i is a T ′n or a τ ′n — again if such a time exists.

Continue the construction until the first ball of radius δn̄ is hit by the curve; let I be chosen in such a

way that this happens at time S′I−1. The curve still has to come back to E after that, so SI−1 is well-defined.

Then, simply let SI be the hitting time of the second ball of radius δn̄. We call task a time-interval of the

form (Si−1, Si]; I is then simply the number of tasks. Following our construction, the last task is different

from the others and will have to be treated specially.

For each i 6 I, let Ji (resp. Ki, J ′i , K ′i) be the largest integer n > 0 for which τn (resp. Tn, τ ′n, T ′n) is

smaller than Si, if such an integer exists, and 0 if it does not. By construction:

δKi+1 < rSi 6 δKi , δJi+1 < ρSi ,

and similar inequalities hold for r′Si
and ρ′Si

.

So, we obtain a sequence of quadruples (Ji,Ki, J
′
i ,K

′
i)i6I , which is not Markovian but on which we can

say enough to obtain the needed second-moment estimate. First of all, for each i < I, at least one of Ji+1,

Ki+1, J ′i+1, K ′i+1 is larger than its counterpart at index i; but if Ji+1 > Ji or Ki+1 > Ki, then J ′i+1 = J ′i

and K ′i+1 = K ′i, by point (iv) of Lemma 9. The main estimate implies the following bound: for each k > 0,

P ((Ji+1,Ki+1, J
′
i+1,K

′
i+1) = (Ji,Ki + k, J ′i ,K

′
i)|FSi) 6 Casb(Ki−Ji)/2ask. (3.6)

Point (ii) of Lemma 8 then says that for every j > 0 and k > 0, and if i < I − 1:

P ((Ji+1,Ki+1, J
′
i+1,K

′
i+1) = (Ji + j,Ki + k, J ′i ,K

′
i)|FSi

) 6 Caη(Ji+j)ask. (3.7)

The first of these bounds also applies in the second case, still as a consequence of the main estimate, so we
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get a last estimate for the last step: for every j > 0,

P ((JI ,KI , J
′
I ,K

′
I) = (JI−1 + j, n̄, J ′I−1, n̄)|FSI−1

) 6 Casb(KI−1−JI−1)/2ask. (3.8)

Notice that here and from now on, as the estimates on radii we get from the values of the J and K are

only valid up to a multiplicative factor of order a, the constants C appearing in the estimates now depend

on the value of a.

Lemma 10 (Reduction). With the previous notations, any jump of the second kind, i.e. corresponding to

Equation (3.7), and such that both j and k are positive, satisfies Ji + j = Ki. In other words, in such a case

γ closes a fjord of width comparable to rSi and then approaches z before going back to the separator set.

$T_{K_i+k}$

$z$ $z’$

$\tau_{K_i}$

TKi+k

z z′

τKi

Figure 5: Second moments: Reduction

Proof. First notice that Lemma 7 ensures that Ji + j 6 Ki; assume that Ji + j < Ki. Let τ = τJi+j and

T = TKi+k, and assume that both lie between Si and Si+1 and that τ < T : At time τ , the situation is similar

to the one in Lemma 8. Construct ζ ′ as in the proof of Lemma 8, and continue ζ ′ to a crosscut ζ̂ ′ separating

z′ from infinity, and still contained in Bτ (δJi+j) — this is possible by the definition of τ . Let τ ′ be the first

time after τ such that γτ ′ ∈ ∂Bτ (δKi
) (necessarily τ ′ < T ). Let ζ ′′ be a continuous curve joining γτ ′ to z

inside Bτ (δKi
). Because the unbounded component of Hτ \ λ′τ is simply connected, the concatenation of ζ ′′

and γ([τ ′, τ ]) is homotopic to ζ ′, and in particular it separates λ′τ from infinity. Hence Bτ (δKi) separates z′

from infinity in Hτ ′ , and in particular τKi
< T . This contradicts the hypothesis Ji + j < Ki.



3 THE SECOND MOMENT ESTIMATE 25

The same construction applies if, among the discovery times lying between Si and Si+1, there is a τ -time

before a T -time. The last case to consider is then when T = TKi+k happens before any closing time. In

particular, if such is the case, BT (δJi+1) does not separate z′ from infinity in HT . The same proof as that of

Lemma 7 then shows that τJi+1 > T̃ = Si+1, which again is a contradiction.

This reduction means that, as far as reaching probabilities are concerned, the jump from (Ji,Ki) to

(Ji+j,Ki+k) behaves exactly like the succession of two jumps, from (Ji,Ki) to (Ji+j,Ki) = (Ki,Ki) (which

happens with probability not greater than Caη(Ji+j)) and then from (Ki,Ki) to (Ki,Ki+k) (which happens

with probability not greater than Cask): Up to replacing C with C2, we can assume in the computations

that jumps of the type corresponding to Equation (3.7) only happen with k = 0, and

P ((Ji+1,Ki+1, J
′
i+1,K

′
i+1) = (Ji + j,Ki, J

′
i ,K

′
i)|FSi

) 6 Caη(Ji+j). (3.9)

Again, this estimate does not hold for the very last task — which, according to this decomposition, would

correspond to the fact that the last two jumps are a jump of J followed by a jump of K, this last one reaching

the value n̄. In that case, with the notation in equation (3.8), we would have j = KI−1 − JI−1 from the

previous Lemma. Assuming that η < sb/2, which we can do, we then obtain the following estimate for the

second-to-last jump in the previous reduction (the last jump always involes K):

P ((JI−1,KI−1, J
′
I−1,K

′
I−1) = (JI−2 + j,KI−2, J

′
I−2, n̄)|FSI−2

) 6 Caηj . (3.10)

In other words, here only the last jump of J appears in the exponent as opposed to the end-value in the

other cases. (In fact, using the main estimate here amounts to discarding that last jump of J entirely, but

writing the estimate this way makes for a slightly more pleasant computation below.) This turns out to be

enough for our purposes.

All we need to do then is to estimate the probability that (Ki,K
′
i) reaches (n̄, n̄). With this formulation,

it would be nice to give a super-harmonic function associated to the process, but despite our best effort we

could not find such a function. The natural candidate would be of the form C ′as(n̄−K)+η(K−J)/2, but this

might fail to be super-harmonic along the diagonal — the reason being that C now depends on a.

So, we will apply the same strategy as in the proof of point (ii) of Lemma 8, namely sum over all possible

paths starting at (0, 0, 0, 0) and ending on (J, n̄, J ′, n̄) for some J, J ′ ∈ J0, n̄K (which we will call good paths).

This leads to rather unpleasant computations, but the general strategy should be clear enough.

Look first at the components Ji and Ki of the walk: Along a good path, the jumps of (Ji,Ki) affect
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either its first or its second coordinate. Let n > 0 be the number of jumps affecting (Ji), and let j1, . . . ,

jn > 0 be their lengths. Then, for 0 6 i 6 n, let li > 0 be the number of jumps affecting K between the i-th

and (i+ 1)-st jumps of J , and let ki,1, . . . , ki,li > 0 be their lengths — with the obvious abuse of notation

that l0 is the number of jumps of K before the first jump of J , and ln is the number of jumps of K after

the last jump of J . In particular, the sum of all ki,j is equal to n̄. Define the integers n′, j′i, l′i and k′i,j in a

similar fashion to describe the behaviour of (J ′i ,K
′
i).

Notice that, just before the jump corresponding to ji, the value of J is j1 + · · ·+ ji−1. Besides, let di > 0

be the value of K − J just after that jump (di is the difference between the sum of the k’s and that of the

j’s so far) : Just before the jump corresponding to ki,j , the value of K −J is equal to di + ki,1 + · · ·+ ki,j−1.

This is sufficient to estimate the probability that a given path occurs: It will be given by the product along

the path of the (conditional, given the past) probabilities of the individual steps, which is bounded above by

the product of two terms, namely

A := a−η(j1+···+jn−1)
l0∏
j=1

C
(
ak0,j

)s(
ak0,1+···+k0,j−1

)sb/2
×

n∏
i=1

C (aj1+···+ji
)η li∏

j=1

C
(
aki,j

)s(
adi+ki,1+···+ki,j−1

)sb/2 .
Here, the empty products are equal to 1 by convention. The term a−η(j1+···+jn−1) accounts for the difference

in the very last task, where as was pointed out above, only the last jump of J , i.e. jn, appears in the

exponent. That task might be a jump towards z′, or not involve a jump of J at all, in which case the factor

would not be needed, but having it in all cases makes the computation more symmetric — it not smaller

than 1 anyway.

Also define the corresponding A′ involving n′, j′i, l′i and k′i,j . With the shortcut notations used in the

previous subsection, letting j = (ji) and ki = (ki,j), so that |j| = n and |ki| = li, this becomes

A = a−ηj
+
n−1C |j|+

∑
|ki|ask0asbk

+
0 /2aηj

+
n∏
i=1

[
askiasbk

+
i /2a|ki|disb/2

]
.

Rewriting the product using the fact that
∑
ki,j = n̄, and letting j0 = d0 = 0 for ease of notation, we
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obtain:

A = a−ηj
+
n−1Cn+

∑
liasn̄

l0∏
j=1

(
ak0,1+···+k0,j−1

)sb/2
×

n∏
i=1

(aj1+···+ji
)η li∏

j=1

(
adi+ki,1+···+ki,j−1

)sb/2
= a−ηj

+
n−1Cn+

∑
liasn̄

n∏
i=0

(aj1+···+ji
)η li∏

j=1

(
adi+ki,1+···+ki,j−1

)sb/2
= Cn+

∑
liasn̄aηjn

n∏
i=0

[
a(n−i)ηji+lidisb/2

li−1∏
j=1

a(li−j)ki,jsb/2

]
.

Indeed, each term aji for i < n appears n − i times in the product, the term ajn appears once (in other

terms, aji appears (n− i) ∨ 1 times), the term adi appears li times and the term aki,j appears li − j times.

We still have to sum the product AA′ over all the good paths. Notice first that giving the values of n,

ji, li and ki,j , n′, j′i, l′i and k′i,j is not sufficient to specify the path of (J,K, J ′,K ′), because it says nothing

about the way the jumps of (J,K) and (J ′,K ′) are intertwined; however, there are at most

(
n+

∑
li + n′ +

∑
l′i

n+
∑
li

)
6 2n+

∑
li2n

′+
∑
l′i

such intertwinings. Hence, up to doubling of the constant C, it is sufficient to sum AA′ over the values of n,

ji, li and ki,j , n′, j′i, l′i and k′i,j . The sum will factor into two terms, one involving the terms around z and

the other the terms around z′, and these two factors are equal. Hence, an upper bound of the probability

that (K,K ′) reaches (n̄, n̄) is given by B2 where

B :=
∑
j,ki

a−ηj
+
n−1C |j|+

∑
|ki|ask0asbk

+
0 /2aηj

+
n∏
i=1

[
askiasbk

+
i /2a|ki|disb/2

]

with a sum taken over all values of the indices leading to a good path.

First, let ki =
∑lj
j=1 ki,j (and notice that di = di−1 + ki−1 − ji). We can rewrite B2 as

B2 = a2sn̄

 ∞∑
n=0

Cn
n∏
i=0

[∑
ji,ki

a[(n−i)∨1]ηji
∑
li,ki,j

Clialidisb/2
li−1∏
j=1

a(li−j)ki,jsb/2

]2

,

where the innermost sum is taken over all choices of li and ki,j satisfying
∑
ki,j = ki, and where the sum

over ji is in fact not present for i = 0. This in turn can be considered as a sum over the ki,j for j 6 li − 1
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with sum smaller than ki. The case ki = li = 0 needs to be treated separately here, and we get

B2 6 a2sn̄

 ∞∑
n=0

Cn
n∏
i=0

[∑
ji

a[(n−i)∨1]ηji

1 +
∑

ki,li>0

Clialidisb/2
li−1∏
j=1

(∑
k>0

a(li−j)ksb/2

)]2

.

The sum over k can be computed explicitly, it is convergent because j < li and its value is smaller than

2a(li−j)sb/2 if a is chosen small enough, which we will assume from now on. The product over j is then equal

to 2li−1ali(li−1)sb/4. The terms with an exponent linear in li can be factored into Cli — note that C now

depends on a — leading to:

B2 6 a2sn̄

 ∞∑
n=0

Cn
n∏
i=0

[∑
ji

a[(n−i)∨1]ηji

1 +
∑
di,li

Clialidisb/2al
2
i sb/4

]2

6 a2sn̄

 ∞∑
n=0

Cn
n∏
i=0

[∑
ji

a[(n−i)∨1]ηji

1 +
∑
di>0

adisb/2
∑
li>0

Clial
2
i sb/4

]2

.

The sums over li and di are convergent, because a < 1, so the whole term in parentheses is bounded by

a constant depending only on κ and a; since it appears n+ 1 times, up to another change in the value of C,

we get:

B2 6 a2sn̄

 ∞∑
n=0

Cn+1
n∏
i=1

[∑
ji>0

a[(n−i)∨1]ηji

]2

.

Summing over all values of ji > 0, we obtain (if a is small enough)

B2 6 a2sn̄

[ ∞∑
n=0

Cn+12aη
n−1∏
i=1

(
2a(n−i)η

)]2

.

Up to yet another increase of C, the factor 2 can be made part of it, and the product over i can be computed

explicitly:

B2 6 a2sn̄

[ ∞∑
n=0

Cn+1aηan(n−1)η/2

]2

.

This last sum is again convergent, so we obtain B2 6 Ca2sn̄, with a constant C depending only on κ and a.

Putting everything together, assuming Eε(z, z
′) holds, first γ has to reach E , and this happens with

probability of order δs. Then, conditionally to the process up to this hitting time, we can apply the previous

reasoning which says that the conditional probability to hit both disks of radius δn̄ is bounded above by
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Ca2n̄s where C depends only on a and κ. Hence,

P (Eε(z, z
′)) 6 Cδsa2n̄s.

Notice that an̄ 6 (ε/δ)a−1 to finally obtain

P (Eε(z, z
′)) 6 Ca−2s ε

2s

δs

which is precisely the estimate we were looking for.

4 The occupation density measure

As a side remark, let us consider the proof of the lower bound for the dimension (cf. Section 1). It is based

on the construction of a Frostman measure µ supported on the path, constructed as a subsequential limit of

the family (µε) defined by their densities with respect to the Lebesgue measure on the upper-half plane:

dµε(z) = ε−s1z∈Cε
|dz|.

Then, µ is a random measure with correlations between µ(A) and µ(B), for disjoint compact sets A and B,

decaying as a power of their inverse distance. So, at least formally, it behaves in this respect like a conformal

field: the one-point function (corresponding to the density of µ) is not well-defined, because µ is singular to

the Lebesgue measure, but the two-point correlation

lim
δ→0

δ−4 Cov (µ(B(z, δ)), µ(B(z′, δ)))

behaves like d(z, z′)−1+κ/8.

A little more can be said about this measure, or about its expectation. The proof of the estimate for

P (γ ∩ B(z, ε) 6= ∅) can be refined in the following way: When we apply the stopping theorem (2.8), saying

that the diffusion conditioned to survive has a limiting distribution shows that

E

[
sin
(αs

2

)8/κ−1
∣∣∣∣S > s

]

has a limit λ when s → ∞, and that this limit depends only on κ. So what we get out of the construction
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in Section 2 is

P

(
∃t > 0 : |g′t(z)| >

=(z)

ε

)
∼
ε→0

λ(κ)
( ε

=z

)1−κ/8
(sin(arg(z)))

8/κ−1
.

This lead us to an estimate on P ( d(z, γ) < ε) by the Köbe 1/4 Theorem; but it is also natural to measure

the distance to γ by the modulus of g′. We can now define

φ1(z) = lim
ε→0

εκ/8−1P

(
∃t > 0 : |g′t(z)| >

=(z)

ε

)
:

the previous estimate boils down to

φ1(z) = λ(κ)=(z)κ/8−1 sin(arg z)8/κ−1,

and by the construction of µ, we obtain that for every Borel subset A of the upper-half plane,

E(µ(A)) �
∫
A

φ1(z) |dz|

with universal constants.

It is then possible to do this construction for several points; note first that the second moment estimate

can actually be written as

P ({z, z′} ⊂ Cε) �
ε2(1−κ/8)

|z − z′|1−κ/8=((z + z′)/2)1−κ/8

as long as both =(z) and =(z′) are bounded below by |z − z′|/M for some fixed M > 0. Indeed, the upper

bound is exactly what we derived in the previous section, and the lower bound is provided by the term

n = n′ = 0 in the sum. Hence, any subsequential limit ψ(z, z′), as ε vanishes, of

ε2(κ/8−1)P ({z, z′} ⊂ Cε)

satisfies ψ(z, z′) � φ2(z, z′) for some fixed function φ2, with constants depending only on κ. The second

moment estimate then shows that

φ2(z, z′) �
z′→z

φ1(z)

|z − z′|1−κ/8
,

i.e. φ2 behaves like a correlation function when z and z′ are close to each other.

The general case of n points, n > 2, can be treated in the same fashion. First, the derivation of second
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moments admits a generalization to n points, as follows. Let (zi)16i6n be n distinct points in H, such that

their imaginary parts are large enough (bigger than, say, 18n times the maximal distance between any two

of them). We use them to construct a Voronoi tessellation of the plane; denote by Ci the face containing

zi, and by δi the (Euclidean) distance between zi and ∂Ci. Let C(z0 , δ0) be the smallest circle containing all

the discs B(zi, δi). Lastly, let E be the “separator set” between the zi’s, defined as

E = C(z
0
, δ

0
) ∪

[(
n⋃
i=1

∂Ci

)
∩ B(z

0
, δ

0
)

]
.

It is the same as defined previously in the case n = 2.

The previous proof can then be adapted to show that

P ({z1, . . . , zn} ⊂ Cε) �
(
δ
0
εn∏
δi

)1−κ/8

(using radii δiak for the circles around zi). In the case n = 2, we have δ1 = δ2 = δ
0
/2, so this estimate is

exactly the same as previously. So, it makes sense to take a (subsequential) limit, as ε tends to 0, of

εn(κ/8−1)P ({z1, . . . , zn} ⊂ Cε),

and all possible subsequential limits are comparable to a fixed symmetric function φn.

The behaviour of φn(z1, . . . , zn) when zn approaches the boundary is then given by the boundary term

in Proposition 4, i.e. φ behaves like (=zn)8/κ−1 there. Lastly, it is easy to see that, when zn tends to z1,

φn(z1, . . . , zn) has a singularity which is comparable to |zn − z1|κ/8−1; in other words, we have a recursive

relation between all the φn’s, given by

φn(z1, . . . , zn) �
zn→z1

φn−1(z1, . . . , zn−1)

|zn − z1|1−κ/8
, (4.1)

φn(z1, . . . , zn) �
=zn→0

φn−1(z1, . . . , zn−1).(=zn)8/κ−1. (4.2)

These relations are very similar to some of those satisfied by the correlation functions in conformal field

theory. In fact it is possible to push the relation further, in two ways. First, we can look at the evolution of

the system in time. This corresponds to mapping the whole picture by the map gt − βt, and this map acts

on the discs of small radius around the zi’s like a multiplication of factor |g′t(zi)| (as long as Kt remains far
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away from the zi’s, which we may assume if t is small enough). Hence, the process

Y nt :=
(∏

|g′t(zi)|1−κ/8
)
φn(gt(z1)− βt, . . . , gt(zn)− βt)

(defined as long as all the zi’s remain outside Kt) is a local martingale. We can apply Itô’s formula to

compute dY nt , and write that the drift term has to be 0 at time 0 to obtain a PDE satisfied by φn.

Note though that the formula involves the modulus of g′t, meaning that the equation we would obtain

cannot be expressed in terms of complex derivatives of gt only, and that we have to introduce derivatives

with respect to the coordinates. This is also the case for the second-order term in Itô’s formula: Since β is

a real process, we would obtain terms involving second derivatives of φn with respect to the x-coordinates

of the arguments. To sum it up, it would be an ugly formula without the correct formalism — which is why

we do not put it here. The formula is much nicer when considering points on the boundary of the domain

— cf. [5].

The last thing we can do is study what happens if we add one point zn+1 to the picture. This will add one

multiplicative factor, corresponding (at least intuitively) to the conditional probability to hit zn+1 knowing

that we touch the first n points already. In the case κ = 8/3 and for points on the boundary of the domain,

this can be computed using the restriction property, and it leads to Ward’s equations (cf. [5]). In the “bulk”

(i.e. for points inside the domain), or for other values of κ, it is not clear yet how to do it.

5 The boundary

A natural question is the determination of the dimension of the boundary of Kt for some fixed t, in the case

κ > 4. The conjectured value is

dimH(∂Kt) = 1 +
2

κ
,

and this can now be proved for a few values of κ for which the boundary of K can be related to the path of

an SLEκ′ with κ′ = 16/κ. In fact, this relation is only known in the cases where convergence of a discrete

model to SLE is known, namely:

• κ = 6, where actually both ∂Kt and the path of the SLEκ′ are closely related to the Brownian frontier.

Hence we obtain a third derivation of the dimension of the Brownian frontier, this time through SLE8/3.

• κ = 8: Here, SLE8 is known to be the scaling limit of the uniform Peano curve and SLE2 that of

the loop-erased random walk (cf. [12]). Since these two discrete objects are closely related through
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Wilson’s algorithm, this shows that the local structure of the SLE2 curve and the SLE8 boundary are

the same, and in particular they have the same dimension.

So we obtain one additional result here:

Corollary 11. Let (Kt) be a chordal SLE8 in the upper-half plane: Then, for all t > 0, the boundary of Kt

almost surely has Hausdorff dimension 5/4.

It would be nice to have a direct derivation of the general result, without using the “duality” between

SLEκ and SLE16/κ; but it is not even clear how to obtain a precise estimate of the probability that a given

ball intersects the boundary of K1.
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