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Abstract

We give a simple derivation of Cardy’s formula for site-percolation in the triangular
lattice, as proved by Smirnov; our main goal, besides simplifying the proof, is to pinpoint
why the triangular lattice is so special ...
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Introduction

The problem of determining the scaling limit of critical percolation in two dimensions is long-
standing, and although there have been substantial progress in the understanding of said limit
via the study of SLE6 processes, convergence is known only in the case of critical site-percolation
on the triangular lattice, for which the essential estimate, known as Cardy’s formula, was proved
by Smirnov in a much celebrated paper (see [5, 6]).

In several steps of Smirnov’s proof, the specific structure of the triangular lattice is used in
a seemingly essential way, and it is a very natural question to try and determine where exactly
it is necessary to be in this specific case, and where the construction can be unified — and thus
simplified ...

The aim of this short note is to provide a mostly self-contained re-writing of Smirnov’s proof,
written in such a way as to emphasize the one key part of the proof where the precise geometry
of the graph is used. As such, it does not contain any new result per se (except for the quite
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anecdotal Corollary 1), but we do believe that it will provide the reader with some insight into
the model.

For general background on percolation, we refer the avid reader to the books of Grimmett [2]
and Kesten [3]; and besides Smirnov’s papers, related work on the scaling limit of percolation
includes a paper of Camia and Newman [1], where they provide the full details about the
convergence of percolation cluster boundaries to SLE processes, and a paper of Smirnov and
Werner [7] where they derive the values of critical exponents for 2D percolation.

We will keep the same notations as in Smirnov’s paper as much as possible; at various point
we will be a bit terse or even a bit sloppy, since writing the proof in full would take many more
pages, be tedious to read and probably not be more informative.

Acknowledgments Of course I would like to thank the organizers of the workshop, and
especially Ilia Binder who convinced me to contribute to these proceedings. I would also like
to mention that part of this construction was done independently by Tóth, who is the one who
had the idea of replacing H in Smirnov’s proof with the more symmetric version we use here.

1 Notations and setup

1.1 The graph

Let Gδ be the hexagonal lattice, embedded as usual to preserve its rotational symmetry of order
3, and scaled by a factor δ > 0 (which we will refer to as the mesh of the lattice). The vertices
of Gδ all have degree 3. In all the following discussion, e will always stand for an oriented edge
of Gδ — which, by a slight abuse of notation, we will denote as e ∈ Gδ.

Let G∗δ be the dual graph of Gδ, defined as follows: The set of vertices (resp. faces) of G∗δ is
in bijection with the set of faces (resp. vertices) of Gδ, and there is an edge between two vertices
of G∗δ if and only if the two corresponding faces of Gδ share an edge. It can be embedded in the
plane by choosing each of its vertices to be the center of the corresponding regular hexagon in
Gδ, in which case it is exactly the usual triangular lattice, scaled by the same factor of δ. If e
is an edge of Gδ, we will denote by e∗ its dual edge, i.e. the unique edge of G∗δ intersecting it,
oriented in such a way that the frame (e, e∗) is direct.

For each vertex x of Gδ, there are three oriented edges having x as their origin. Letting
τ = e2πi/3, if e is one of these edges, we will denote the other two by τ.e and τ2.e. Seeing each
edge as a complex number (the difference between the positions of its endpoint and its origin),
this corresponds to complex multiplication; however, we prefer seeing it as an action of the group
{1, τ, τ2} on the set of oriented edges of Gδ, since this will make the constructions below easier.
When needed we will also use the notation −e for the edge sharing the same endpoints as e but
with opposite orientation.

Notice the following, fundamental identity: For each oriented edge e ∈ Gδ,

e∗ + τ(τ.e)∗ + τ2(τ2.e)∗ = 0. (1)

Here, τ(τ.e)∗ means the product of two complex numbers, namely τ and the difference between
the endpoint and the origin of (τ.e)∗ — we will stick to this convention, that a dot means the
action of τ on edges while no dot means complex multiplication. This identity is actually trivial
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(using the fact that the action of τ on edges can itself be seen as complex multiplication, the
sum above is equal to (1 + τ2 + τ4)e∗), but as it will appear it is essentially the only place in
the construction where we use the fact that G∗δ is the usual, equilateral triangular lattice.

It is to be noted that the above identity actually characterizes the triangular lattice; more
precisely, the sum is 0 if and only if the triangle around the origin of e is equilateral. So, it
seems that the triangular lattice is the only one (apart from trivial modifications of it) in which
a fully combinatorial proof like follows is possible ...

1.2 The model

Let Ω be a smooth, bounded, simply connected domain in the complex plane. We will be
interested in critical site-percolation on the intersection of Ω with G∗δ . More specifically, the
question we are interested in is the following. Let A, B, C and D be four points on the
boundary of Ω, in that order. For every δ > 0, let Ωδ be the largest connected component (in
terms of graph connectivity) of the intersection of Ω with Gδ, and let Ω∗δ be its dual graph. Ωδ

should be seen as a discretization of Ω at scale δ. Let Aδ, Bδ, Cδ and Dδ be the vertices of Ωδ

that are closest to A, B, C and D respectively.
The model we are considering is now critical site-percolation on Ω∗δ , i.e., each vertex of

Ω∗δ is taken to be open with probability pc = 1/2, independently of all the others. Let
Cδ(Ω, A,B,C,D) be the event that there is an open crossing in Ω∗δ , between the intervals AδBδ
and CδDδ of its boundary. Standard Russo-Seymour-Welsh estimates (cf. [2] for instance) tells
us that at criticality, the probability of Cδ(Ω, A,B,C,D) is bounded away from both 0 and 1 as
δ goes to 0; The main result we prove here is the following:

Theorem 1 (Smirnov) The probability of the event Cδ(Ω, A,B,C,D) has a limit f(Ω, A,B,C,D)
as δ goes to 0. Moreover, the limit is conformally invariant, in the following sense: If Φ is a
conformal map from Ω to another simply connected domain Ω′ = Φ(Ω), and extends continuously
to ∂Ω, then

f(Ω, A,B,C,D) = f(Φ(Ω),Φ(A),Φ(B),Φ(C),Φ(D)).

As will appear naturally in the proof and was first pointed to by Carleson, f has a most
simple expression in the case where Ω itself is an equilateral triangle with vertices A, B and C
and D on the interval (CA): Then f(Ω, A,B,C,D) = |CD|/|CA|. By conformal invariance,
this gives the value of f for every conformal rectangle.

2 The proof

2.1 General framework

The framework of the proof here is the same as in Smirnov’s proof, but we describe it in some
detail for sake of self-containedness. Recall that Ωδ is a discrete approximation of Ω; for every
point z be a point of the Ωδ lying inside one of the triangles of Ω∗δ , we will denote by EA,δ(z)
the event that there exists a simple path of open vertices in Ω∗δ , separating Aδ and z from Bδ
and Cδ — and EB,δ(z), EC,δ(z) similarly, with obvious circular permutations of the letters. Let
HA,δ(z) (resp. HB,δ(z), HC,δ(z)) be the probability of EA,δ(z) (resp. EB,δ(z), EC,δ(z)). From
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now on, in many cases where this does not introduce confusion, we will omit the mention of δ
in those notations.

From Russo-Seymour-Welsh theory, we obtain the following: There are two positive constants
KE and εE such that, for every δ > 0 and any two points z and z′ in Ωδ (up to the boundary
of the domain), ∣∣HA,δ(z

′)−HA,δ(z)
∣∣ 6 KE

∣∣z′ − z∣∣εE (2)

and a similar bound for HB and HC . Hence, if we suitably extend these functions continuously
to Ω, we obtain a family of uniformly Hölder maps from Ω to R. The family is then relatively
compact with respect to uniform convergence, and it is hence possible to extract a subsequence
(HA,δn , HB,δn , HC,δn)n>0, with δn → 0, which converges uniformly to a triple of Hölder maps
(hA, hB, hC) from Ω to [0, 1], with the same exponent and norm as the HA’s.

If we can identify the triple (hA, hB, hC) uniquely, we will obtain convergence of the family
(HA,δ, HB,δ, HC,δ) as δ goes to 0. Then, making the additional remark that EC,δ(Dδ) is the same
event as Cδ(Ω, A,B,C,D), this will conclude the proof of the first statement in Theorem 1.

The way we will do that is slightly different from Smirnov’s, the difference being essentially
in the determination of the boundary conditions (see Subsection 2.4). Introduce the following
two functions:

Hδ(z) := HA,δ(z) + τHB,δ(z) + τ2HC,δ(z) Sδ(z) = HA,δ(z) +HB,δ(z) +HC,δ(z).

(This is slightly different from Smirnov’s H, but the idea is exactly the same and the version
we use here is more symmetric.) They also form a family of uniformly Hölder maps, and the
subsequence (Hδn) (resp. Sδn), with the same (δn) as were introduced previously, converges to

h := hA + τhB + τ2hC , resp. s := hA + hB + hC .

The key step of the proof, to which the next two sections are devoted, is to prove that the
functions h and s are holomorphic on Ω. Subsection 2.4 then concludes the proof. Notice
though that since s is both holomorphic and real-valued, it has to be constant, and it is easy to
see from boundary conditions that it is actually equal to 1:

Corollary 1 As the mesh of the discretization vanishes, the sum of the probabilities of EA,δ(z),
EB,δ(z) and EC,δ(z) converges to 1, uniformly in z ∈ Ω.

The exact same proof works for any triangulation in which Russo-Seymour-Welsh holds, so
this fact seems to be a fundamental property of critical two-dimensional percolation (and might
be the key to understanding universality in this particular, limited case, though this is hardly
even speculative). As of this time, no direct, combinatorial proof of the corollary seems to be
known.

2.2 Discrete integration

The theorem best adapted in the present case to prove that h is indeed holomorphic is Morera’s
theorem, which we recall without proof.
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Theorem 2 (Morera) Let Ω be a simply connected domain of the complex plane, and let f :
Ω→ C be a continuous function. Then f is holomorphic if, and only if, for every simple, closed,
smooth curve γ contained in Ω, the integral of f along γ vanishes.

So, let γ be a simple, closed, smooth curve contained in Ω, and for every δ > 0 let γδ be a
discretization of γ contained in Ωδ, i.e. a finite chain (γδ(k))06k6Nδ of pairwise distinct vertices
of Gδ, ordered in the positive direction, such that for every index k, γδ(k) and γδ(k + 1) are
nearest neighbors, and chosen in such a way that the Hausdorff distance between γδ and δ goes
to 0 with δ. Notice that Nδ can be taken of order δ−1, which we shall assume from now on.

Since the subsequence (δn) is chosen so that hδn converges uniformly to h, we have the
following fact: As n goes to infinity,

In(γ) :=

Nδn∑
k=0

Hδn(γδn(k)) +Hδn(γδn(k + 1))

2
(γδn(k + 1)− γδn(k))→

∮
γ
h(z)dz. (3)

So, to prove that h is holomorphic, it is sufficient to show that In(γ) goes to 0 as n goes to
infinity.

The discrete curve γδ surrounds a finite family of faces of Gδ, which we shall denote by ◦
γδ.

Besides, for every (oriented) edge e = xy in Gδ, define the following notations:

Hδ(e) :=
Hδ(x) +Hδ(y)

2
, ∂eH := H(y)−H(x)

(without dividing by the length of e). Last, if f is a face of Gδ, let ∂f be its oriented boundary,
seen as a set of oriented edges. With these notations, we get a shorter notation for In (where
e ∈ γδ means that e is of the form γδn(k)γδn(k + 1) for some k) and the following identity:

In(γ) =
∑
e∈γδ

eHδ(e) =
∑
f∈ ◦
γδ

∑
e∈∂f

eHδ(e). (4)

Indeed, in the last equality, each boundary term is obtained exactly once with the correct sign,
and each interior term appears twice with opposite signs — for every edge e, Hδ(−e) = Hδ(e).

If f is a face of Gδ, let c(f) be its center (it is a vertex of G∗δ). The sum of eH(e) around f
can be rewritten in the following fashion: If x0, x1, . . . , x|f | = x0 are the vertices of f , we can
“integrate by parts” (which is the same as re-indexing part of the sum — we do it explicitly this
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time, and shall do it quietly a few more times below) and obtain

∑
e∈∂f

eHδ(e) =

|f |−1∑
k=0

(xk+1 − xk)
H(xk+1) +H(xk)

2

=

|f |−1∑
k=0

(xk+1 − c(f))
H(xk+1) +H(xk)

2
−
|f |−1∑
k=0

(xk − c(f))
H(xk+1) +H(xk)

2

=

|f |−1∑
k=0

(xk − c(f))
[H(xk+1)−H(xk)] + [H(xk)−H(xk−1)]

2

=

|f |−1∑
k=0

(
xk + xk+1

2
− c(f)

)
[H(xk+1)−H(xk)].

Putting this back in the previous sum, notice that for x, y nearest neighbors in the interior of
γ, the term H(y) −H(x) appears twice, once for each face of Gδ adjacent to xy, and that the
factors (x + y)/2 cancel between them, leaving only the difference between the centers of the
faces, i.e. the dual edge of xy.

On the boundary, we obtain of the order of δ−1 terms, each being of order δ1+εH , so the
contribution of the boundary terms goes to 0 with δ, and we finally obtain

In(γ) =
1

2

∑
e⊂γδ

e∗∂eH + o(1), (5)

with the slight abuse of notation that e ⊂ γδ means that e is an edge of Hδ lying in the interior
of γ. We will keep this notation from now on.

For every edge e = xy of Ωδ let PA,δ(e) (and similarly PB and PC) be the probability that
EA,δ(y) is satisfied, but EA,δ(x) is not. Again by Russo-Seymour-Welsh, we get the following
estimate, uniformly in δ and e:

PAδ(e) 6 KP δ
εP . (6)

Besides, we have for every edge e:

∂eHA = PA(e)− PA(−e).

So, replacing H by its definition in (5), and re-indexing the sum to obtain each oriented edge in
exactly one term, we get the following expression for the discrete contour integral:

In(γ) =
∑
e⊂γδ

e∗
[
PA(e) + τPB(e) + τ2PC(e)

]
+ o(1). (7)

2.3 Color-swapping

The main combinatorial tool that we will use in what follows, and in fact the only place where
the fact that the model is critical percolation at pc = 1/2, is the following (stated here with our
notations):
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Proposition 1 (Smirnov) For every edge e of Ωδ, we have the following identities:

PA(e) = PB(τ.e) = PC(τ2.e).

We refer the reader to [6] for the (elementary, but very clever) proof of this result; said proof
does not actually use the fact that we are considering the triangular lattice, or even the fact that
1/2 is the critical parameter: It extends to site-percolation with parameter 1/2 on any planar
triangulation. Using this identity in (7), we obtain

In(γ) =
∑
e⊂γδ

e∗
[
PA(e) + τPA(τ2.e) + τ2PA(τ.e)

]
+ o(1)

=
∑
e⊂γδ

(e∗ + τ(τ.e)∗ + τ2(τ2.e)∗)PA(e) + o(1),

where the last step is obtained by re-indexing the sum one last time. Each term in the sum is
then equal to 0, by Equation (1), so we get In(γ) = o(1) which is exactly what we needed. It
follows that the limit h is holomorphic on Ω.

Replacing H with S in the above computation, it is easy to check that one gets the sum,
over the same family of oriented edges, of (e∗ + (τ.e)∗ + (τ2.e)∗)PA(e); but the identity

e∗ + (τ.e)∗ + (τ2.e)∗ = 0 (8)

is true in any lattice, as it is the sum of the oriented edges of the triangle around the origin
of e. Notice how this does not use the exact details of the triangulation anymore, only Russo-
Seymour-Welsh estimates, so it holds on any triangulation for which those hold, as announced.

2.4 Boundary conditions

The last step we have to perform, now that we know that h is holomorphic, is to identify enough
boundary conditions to specify it uniquely. This can be done in a very simple way, as follows.

Let z be a point on the boundary of Ωδ lying between B and C. It is clear that hA(z) = 0,
and it is true that hB(z) + hC(z) = 1 (either from Corollary 1, or by looking at the discrete
exploration process started at A and aiming at the boundary interval [BC], for which HB(z)
(resp. HC(z)) is the probability that it touches [zC] before (resp. after) [Bz]). Hence, h(z) lies
on the interval [τ, τ2] of the complex plane. Besides, h(B) = τ and h(C) = τ2, so h induces a
continuous map from the boundary interval [BC] of Ω onto [τ, τ ]. By Russo-Seymour-Welsh yet
again, h is one-to-one on this boundary interval.

Similarly, h induces a bijection between the boundary interval [AB] (resp. [CA]) of Ω and the
complex interval [1, τ ] (resp. [τ2, 1]), so putting the pieces together we see that h is a holomorphic
map from Ω to C which extends continuously to Ω̄ and induces a continuous bijection between
∂Ω and the boundary of the triangle with vertices at 1, τ and τ2.

From standard results of complex analysis (“principle of corresponding boundaries”, cf. for
instance Theorem 4.3 in [4]), this implies that h is actually a conformal map from Ω to the
interior of the same triangle. But we know that h maps A (resp. B, C) to 1 (resp. τ , τ2),
and this determines it uniquely. In other words, there is only one possible limit for the triple
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(HA, HB, HC) as δ goes to 0, which gives conformal invariance for free and concludes the proof
of Theorem 1.

As a corollary of Theorem 1, we get a nice expression for hA: If ΦΩ,A,B,C is the conformal
map from Ω to the triangle mapping A, B and C as previously (which means of course that
ΦΩ,A,B,C = h) then

HA,δ(z)→
2<(ΦΩ,A,B,C(z)) + 1

3
.

If in particular Ω is the equilateral triangle itself, then h is the identity map and we obtain
Cardy’s formula in Carleson’s form: if D ∈ [CA] then

Ppc ([AB]↔ [CD]) =
|CD|
|AB|

.
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